
International Journal of Information Technology and Knowledge Management
January June 2009, Volume 2, No. 1, pp. 131-134

METRICS-BASED EVALUATION OF QUALITY OF
NON-FUNCTIONAL SPECIFICATIONS

Simrandeep Singh Thapar*, Hardeep Singh**, & Karanjeet Singh Kahlon**

Non-functional Specifications or ‘ilities’ are critically important at the time of selection of components when there are already
many candidate components providing functional capabilities. Quality aspect of non-functional metrics is very important in
selection procedure of components. With the help of metric it becomes easier to identify the best suited component. In this
paper we evaluated quality of non-functional specifications which is based on metrics.

Keywords: Quality, availability, reliability, maintainability, metrics

* Sr. Lect., Department of PG Studies, ACET, Amritsar.
E-mail: simthain@yahoo.com

** Professor, DCSE, Guru Nanak Dev University, Amritsar.
E-mail: hardeep_gndu@rediffmail.com, karankahlon@yahoo.com

1. INTRODUCTION

Software companies in development of software products
come across with basic constraints like Time to market and
less cost. These can be reduced to some extent by using
components. Components should be used only after cost-
benefit analysis. Component based development (CBD) is
in great demand for the development of software products
from the components. Products are no longer developed
from scratch; they are instead an assembly of components
developed independently of the products [Roger S.
Pressman 2001].Components are the software units which
act in composition or independently [Szypersky 2002]. A
component conforms to and provides the physical
realization of a set of interfaces. Using components offers
many advantages: Reuse to increase productivity and quality
that further effect positively on performance and reliability,
functionality is instantly accessible to the developer, cost
cutting to some extent and time to market. As it is known,
nothing is perfect, it applies to the components as well, as
often, only a brief description of its functionality is provided
with a component, component carries no guarantee of
adequate testing, only a limited description of the quality
of the component, developer does not have access to the
source code of the component. Component are developed
using frameworks like CORBA, JavaBeans, COM, .NET
etc.

Component specification aims to provide a basis for
the development, management and use of components. A
Component Specification makes it easier to buy, sell, and
replace components. Component-based systems require a
renewed emphasis on specification and verification, because
if one is to build a computer system based on components

built by others, then one must know what each component
is supposed to do and trust it to carry out that task. Similarly,
the builder of a component needs to know what behavior its
users depend on, so that improvements in algorithms and
data structures can be made. A specification of a component
can meet both these needs, since it acts as a contract between
builders and their clients. Software component research
community emphasized more on functional details of
components but without non-functional details it would be
quite cumbersome to identify or to make decision to select
components out of components that provide all the
functionality. So, Non-functional specifications prove
decisive at the time of selection. Further, selection of
particular component depends on functionality, quality,
confidence in manufacturer and satisfaction of some
constraints etc. Except functionality, all are non-functional
or extra-functional properties. Specification of a component
must consists of: A precise definition of the component’s
operations, all context dependencies (how and where the
component can be deployed) along with non-functional
properties or quality attributes which always prove decisive
when component selection is to be made. There are several
specification frameworks which are used in academia and
the industry, for instance Eiffel, UML/OCL, VDM, B, Z,
Larch/LSL, SDL, and RAISE/RSL [Uwe Keller 2005].

This paper has following sections after introduction,
section 2 discusses further non-functional aspects with focus
on quality aspects, section 3 discusses metrics approach to
evaluate quality, section 4 concentrates on availability aspect
of non-functional specifications and section 5 concludes this
research paper.

2. QUALITY PERSPECTIVE OF NON-FUNCTIONAL PROPERTIES

The role of non-functional (or qualitative) specifications
becomes more important because ready-made software
components have their functionality already built-in. Non-
functional requirements often correspond to strategic or

��� �����	
�����	������������
�����	��������	������	�������	

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\27_SIMRANDEEP SINGH THAPAR_HARDEEP SINGH_KARANJEET SINGH

In [L. Beus-Dukic 2000] explains three types of non-
functional specifications for components. Architecture
specifications address a component’s ability to be integrated
into a system; these include performance characteristics,
reliability, security, reusability and portability, Domain
requirements describe properties related to the component’s
environment and Organizational requirements focus on the
aspects of the vendor and customer. We focused on the
evaluation of architecture properties especially quality.

According to the [IEEE 610.12] standard, as an attribute
for a software system, software quality is

(1) The degree to which a system, component, or
process meets specified requirements.

(2) The degree to which a system, component, or
process meets customer or user needs or
expectations.

After reviewing the literature, it is found that there is
no consensus on how to define and categorize software
quality characteristics.

3. METRICS-BASED QUALITY EVALUATION

A model is required for quality evaluation and evaluation
can be qualitative or quantitative. A typical example of
qualitative evaluation is an expert’s opinion on the
component artifact. This evaluation is subjective, and as
known poses problems in comparison and generalization.
The quantitative approach to evaluation provides, a more
pragmatic way of dealing with this problem. It consists of
defining, collecting and analyzing objective quantitative
metrics that can be combined into a quality model [Miguel
Goulão, Fernando Brito e Abreu 2004]. We will take up only
those properties which deal with quality and try to follow
as much as possible a standard terminology, in particular
the most apt quality model ISO 9126. Our research uses the
metrics to quantify the concepts of quality. A quality
characteristic is a set of properties of a software product by
which its quality can be described and evaluated. A
characteristic may be refined into multiple levels of sub-
characteristics [Manuel F. Bertoa, 2002].

ISO 9126 Model for Software Components

Characteristic Sub-characteristic Sub-characteristic
(Runtime) (Life cycle)

Functionality Accuracy Suitability Interoperability
Security Compliance Compatibility

Reliability Recoverability Maturity

Usability Learnabilitiy Understand-
ability Operability
Complexity

Efficiency Time behavior
Resource behavior

Maintainability Changeability Testability

A metric can be assigned to the quality characteristics,
where a metric is a procedure for examining a component
to produce a single datum, either a symbol (e.g. Excellent,
Yes, No) or a number. Metrics that are used to measure are:
ratio specifies the number in percentage, presence specifies
the existence whether present or not, time specifies the time
duration and integer specifies the number.

Quality Attributes for Components Which are
Measurable at Runtime

Sub-characteristics Attribute Type

Accuracy Precision Ratio

Security Data Encryption Presence

business objectives of end-user organization as a whole, and,
therefore, are likely to have higher priority if conflicting
with some of the functional requirements for the software
component. [Ljerka Beus-Dukic 2000] Non-functional
properties are defined as the restrictions on the software
product and are associated with the QoS which encompass
“ility” properties for e.g. maintainability, usability,
portability etc. Fig.1 shows that a component presents
interfaces to customers to assemble the component in
software and each interface can provide many operations.
Here, credential is a combination of Attribute, Value and
Credibility, where Attribute is a description of a property of
a component, Value is a measure of that property and
credibility is a description of how the measure has been
obtained.

Figure 1: Non-Functional Specifications

Component

Interface

Operation

*

in-interfaces*

*

*

Attribute
Value
Credibility
IsPostulate : Boolean

Credential

*

1

* 1

*

1

Parameter

1

*

Type

1 *

*

out-interfaces

*

������������
���������	�����������	�	���	����	�� ������������	� ���

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\27_SIMRANDEEP SINGH THAPAR_HARDEEP SINGH_KARANJEET SINGH

By having a framework fosters a more objective
analysis of quality properties, partially mitigating the
shortcomings of narrative reviews. A metric framework is
proposed by [Miguel Goulão 2004].

• Scope – granularity level

• Intent – main objectives

• Technique – how the metrics are defined and
validated

• Critique – a qualitative assessment of the
noticeable features of the proposal

• Maturity – the maturity level

The first four items of this structure aim to provide a very
brief overview of the proposals, while the last aims to
characterize each proposal according to its maturity level.
To assess the maturity, we start by identifying a set of rating
scales concerning different aspects of metrics based quality
evaluation. For each of those rating scales, we then identify
several levels of maturity that will aid us in the graphical
depiction of proposals maturity. Table 1 presents a
condensed view of our maturity comparison framework.

Table 1
A metrics Proposal Maturity Comparison Framework

Maturity Quality Mapping Metrics Level of

level Mode Quality definition Validation

(QM) (MQ) (MD) (LV)

0 N/A N/A N/A N/A

1 Ad-hoc Ad-hoc Wish list Anecdotal

2 Structured Rationale Informal Small experiment

3 Uncorrelated Goal-driven Semi-formal Industrial
experiment

4 Validated Validated Formal Independent

4. EVALUATION OF AVAILABILITY CHARACTERISTIC

OF QUALITY

In this paper, we are presenting a set of measures to assess
the Usability of software components. First of all
Availability needs to be defined. It is continuity of service
to the customer. A component is available if it is in
operational state and not down for repairs or maintenance
[K.Shridhara Bhat 2007].

Availability = uptime / (uptime+ downtime)

Further, here we need to specify Reliability which refers
to the length of time that a component can be used before it
fails. In other words, reliability is the probability that a
component will function for a specified period of time
without failure.

The reliability of the component is also related to
meantime between failures (MTBF) which is just the

average time that the component functions from one failure
to the next. The longer the MTBF, the more reliable the
component.

Maintainability refers to the restoration of a component
or service once it has failed. Since all customers consider
maintenance or repairs as a nuisance, a high degree of
maintainability is desired so that the product can restored to
be used quickly. Maintainability can be measured by the
mean time to repair (MTTR) the component.

Availability then is a combination of reliability and
maintainability. If a component is high in both reliability
and maintainability, it will also be high in availability.
Availability then can be expressed as follows:

Availability = MTBF/MTBF + MTTR

For example, if a component has an MTBF of 8 hours and a
MTTR of 2 hours each time it fails, then its availability is
calculated as follows:

Availability = 8/8 + 2 = 0.8 or 80%

5. CONCLUSION

In specifying non-functional properties difficulty is clear.
There are some common shortcomings of current approaches
like ambiguity in definition, lack of adequacy of specifying
formalism and insufficient validation of current quality
models and metrics for software components. Szyperski
suggests that the big-O complexity of a component be
specified to indicate its time and space costs. [Sitaraman
2001] outlines a number of shortcomings of this solution.
Although there are many difficulties specifying the non-
functional properties and requirements of components they
are essential to users during the selection and evaluation of
components. Often, the non-functional properties set
components with similar functionality apart.

References

[1] Pressman, Roger S., “Software Engineering: A Practitioner’s
Approach”, McGraw Hill India (2001).

[2] Szyperski, C., Gruntz, D. and Murer, S. “Component
Software: Beyond Object-Oriented Programming”. New
York, ACM Press - Addison Wesley (2002).

[3] Uwe Keller, Jos de Bruijn, “Functional Specification in
Common Specification Frameworks for Software
Components”, WSML Working Draft D28.1 v0.1 January 18,
2005 http://www.wsmo.org/2005/d28/d28.1/v0.1/20050118/

[4] Ljerka Beus-Dukic, “Non-Functional Requirements for
COTS Software Components”, http://users.wmin.ac.uk/
~beusdul/papers/cotsw00.pdf

[5] IEEE Standard Glossary of Software Engineering
Terminology, IEEE Std 610.12-1990, (10 Dec. 1990)

[6] Miguel Goulão, Fernando Brito e Abreu, “Software
Components Evaluation: an Overview”, CAPSI2004.

��� �����	
�����	������������
�����	��������	������	�������	

COM6\D:\JOURNAL-2009\11-IJITKM, 2009\27_SIMRANDEEP SINGH THAPAR_HARDEEP SINGH_KARANJEET SINGH

[7] Manuel F. Bertoa, “Quality Attributes for COTS
Components”, Proceedings of the 6th ECOOP Workshop
on Quantitative Approaches in Object-Oriented
Software Engineering (QAOOSE2002) 1(2), (2002),
128–144.

[8] K. Shridhara Bhat, “Total Quality Management”, Himalya
Publishing House, 1st Ed. (2007)

[9] M. Sitaraman. “Compositional Performance Reasoning”. In
4th ICSE Workshop on CBSE: Component Certification and
Systems Prediction (ICSE 23), Toronto, ON, (May 2001).

